
Journal of Computational Physics 228 (2009) 6231–6249
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Efficient mesh motion using radial basis functions with data
reduction algorithms

T.C.S. Rendall *, C.B. Allen
Aerospace Engineering Department, University of Bristol, Bristol BS8 1TR, UK
a r t i c l e i n f o

Article history:
Received 5 June 2008
Received in revised form 6 May 2009
Accepted 11 May 2009
Available online 18 May 2009

PACS:
01.30.�y

Keywords:
CFD mesh deformation
Radial basis functions
Greedy algorithms
Aeroelastics
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.05.013

* Corresponding author. Tel.: +44 0117 331 7641
E-mail addresses: thomas.rendall@bristol.ac.uk (T
a b s t r a c t

Mesh motion using radial basis functions has been demonstrated previously by the authors
to produce high quality meshes suitable for use within unsteady and aeroelastic CFD codes.
In the aeroelastic case the structural mesh may be used as the set of control points govern-
ing the deformation, which is efficient since the structural mesh is usually small. However,
as a stand alone mesh motion tool, where the surface mesh points control the motion,
radial basis functions may be restricted by the size of the surface mesh, as an update of
a single volume point depends on all surface points. In this paper a method is presented
that allows an arbitrary deformation to be represented to within a desired tolerance by
using a significantly reduced set of surface points intelligently identified in a fashion that
minimises the error in the interpolated surface. This method may be used on much larger
cases and is successfully demonstrated here for a 106 cell mesh, where the initial solve
phase cost reduces by a factor of eight with the new scheme and the mesh update by a fac-
tor of 55. It has also been shown that the number of surface points required to represent
the surface is only geometry dependent (i.e. grid size independent), and so this reduction
factor actually increases for larger meshes.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

During aeroelastic simulation it is usually necessary to update a fluid volume mesh based on the deformation of one or
more surfaces. Similarly, it may also be convenient to deform a fluid mesh to accommodate a design modification, for exam-
ple, during an optimisation exercise, rather than regenerate an entire mesh from scratch based on a new surface. A new mesh
will have a new discretisation error and it may be preferable to assess the effect of design modifications on a mesh that is
identical to the original in terms of connectivity, but with small changes in the geometry. In either case a convenient and
efficient way of deforming a volume mesh around multiple moving bodies while preserving quality is required.

The authors have recently developed a unified meshless approach to fluid–structure coupling and mesh motion [1,2]. This
method is based on multivariate interpolation using radial basis functions and has several significant advantages. Primarily,
all volume mesh and flow-solver type dependence is removed, and all operations are performed on totally arbitrary point
clouds of any form. Hence, all connectivity and user-input requirements are removed from the motion scheme, as only point
clouds are required to determine the dependence. The method may equally well be applied to structured and unstructured
grids, again because no connectivity information is required. Furthermore, no elaborate computations are required during an
unsteady simulation, just matrix–vector multiplications, since the required dependence relations are computed only once
prior to the start of the simulation and then remain constant. This property means the method is both perfectly parallel, since
. All rights reserved.

; fax: +44 0117 927 2771.
.C.S. Rendall), c.b.allen@bristol.ac.uk (C.B. Allen).

mailto:thomas.rendall@bristol.ac.uk
mailto:c.b.allen@bristol.ac.uk
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

6232 T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249
only the data relevant to each structured block or unstructured partition are required to move those points, and totally inde-
pendent from the flow-solver. This allows a completely generic ‘black box’ tool to be developed which is ideal for use in an
optimisation [3,4] approach or unsteady simulation providing the surface deformations remain continuous (no topological
changes, such as surface splitting or merging, are possible). However, while the approach is particularly attractive for high
quality mesh motion it is quite expensive in pure form. Hence, this paper presents results of recent work aimed at developing
a very efficient implementation. Smart data reduction schemes have been developed, which choose a significantly reduced
data set based on minimising an error function, and are shown to reduce the cost of the mesh motion by over 50� in terms of
both time and memory requirements for a 106 cell mesh.
2. Mesh motion

There are many ways to deform a volume mesh during a time-accurate simulation, but the method adopted often de-
pends on both the mesh type used and the application. For example, for a structured single block mesh, a simple interpola-
tion scheme can be used as the grid connectivity is known explicitly, and this means algebraic type methods can be
employed, see for example, Allen [5]. However, for multiblock meshes the situation is more complex, as the motion needs
to cross block boundaries, where connectivity may be discontinuous, i.e. for example, an i; j face on one block may not con-
nect to an i; j face on its neighbour. Each block can be parameterised, but a global parameterisation is not normally possible.
In this case, motion can be achieved by solving a global set of dependence equations for the block corners, then solving for
block faces, and finally interpolating the motions through each block, see for example, Jones et al. [6].

For an unstructured (or hybrid) mesh there are two common methods to solve the global problem: the spring analogy,
first presented by Batina [7], or solution of a set of partial differential equations. In the spring analogy approach each node
can be considered as connected to its neighbours by springs, the stiffness of which is proportional to the reciprocal of the
length [7,8]. This approach has been applied to optimisation and unsteady flow problems, but is expensive and can lead
to grid quality problems for larger motions. This was improved by Farhat et al. [9] to include a torsional spring to avoid
the grid crossover problem, and in Blom [10] this torsional spring is shown to be essential for moving viscous meshes. Sheta
et al. [11] have also reconsidered the formulation to use solid structural elements in an effort to prevent cell inversion.

The PDE solution approach usually involves an elliptic problem solution, see for example, Loehner and Yang [12,13] or
Jasak and Tukovic [14]. Grid quality can be improved by solving a bi-harmonic set of equations that also preserve orthogo-
nality [15,16]. However, for large meshes, or for an unsteady approach where the mesh may need to be moved several times
per time-step, a spring analogy or elliptic solution approach is likely to be too expensive. Unfortunately, cheaper methods,
for example, interpolation schemes, do not normally produce meshes of sufficient quality. Hence, cheaper but high quality
alternative mesh motion schemes have been sought. For example, Melville [17,18] developed a method based on connectiv-
ity to moving surfaces, and applied it to overset meshes for aeroelastic simulations, Allen [19] presented a universal grid
type-independent approach based on connectivity, which maintains orthogonality by accounting for surface rotations,
and Cizmas and Gargoloff [20] also presented a scheme accounting for surface rotations. Liu et al. [21] have recently pre-
sented a cheap and very effective method, based on Delaunay mapping, although this does not account for surface rotations.

Mesh motion methods are normally driven by the motion of the solid surface and, as this is part of the fluid–structure
coupling method, it can make sense to develop a unified approach to CFD–CSD coupling and volume mesh motion [1]. How-
ever, the goal here is to develop RBFs purely for mesh motion. The simplistic, exact, cost of using radial basis functions (RBFs)
for mesh motion is quite large (in terms of data required), as the dependence matrix is strictly Nsp � Nvp, where sp refers to
surface points and vp to volume points, but the quality is comparable to the best that may be achieved with either a spring
analogy or PDE. However, a significant point is that there are no elaborate computations required during the simulation, just
matrix multiplications. As stated earlier it is the goal of this paper to present a framework in which the data requirements are
significantly lowered to achieve an efficient mesh motion scheme applicable to meshes of any size.
3. Radial basis function mesh motion

3.1. Formulation

Examples of the application of RBFs to fluid–structure interpolation are given by Wendland et al. [22,23] where the meth-
od is applied to find static wing deflections in transonic flow. The general theory of RBFs is presented by Buhmann [24] and
Wendland [25]. The work presented here moves the volume using the surface deformations; hence, for an aeroelastic sim-
ulation the deformed surface needs to be obtained first from the fluid–structure interpolation. A wide range of methods are
available for this, also including radial basis functions, and the reader is referred to Wendland et al. [22,23] for details.

Relevant work in area of mesh motion is by Sprekreijse et al. [26], who uses a volume spline (RBF interpolation with
/ðnÞ ¼ n) to calculate the block vertices on a structured mesh and then updates the entire mesh using transfinite interpola-
tion (TFI) within each block. This work, that has its origins in a work by Hounjet and Meijer [27], was combined with another
volume spline for fluid–structure interpolation and used to analyse a full F-16 configuration under static conditions by Pra-
nanta and Meijer [28]. More recent applications to mesh motion are by de Boer and Bijl [29,30] and Jakobsson and Amoignon
[31]. de Boer and Bijl [29,30] also used compact RBFs for mesh motion, but included a polynomial term and did not explore

T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249 6233
any methods to increase the speed of the method; in comparison, for the work presented here polynomial terms are ex-
cluded and a data reduction method is used to minimise the cost and make the scheme suitable for large meshes. de Boer
and Bijl [29,30] also moved the volume mesh directly from the structural mesh, whereas in the work presented here the vol-
ume is deformed from the surface, making the method applicable outside aeroelasticity. Jakobsson and Amoignon [31] used
a wide range of basis functions to compute mesh motion for an adjoint fixed-wing optimisation process. For this the RBF
motion scheme was advantageous as it provided the derivative of the mesh node positions with respect to the control (sur-
face) points. The size of the problem was tackled by reducing the control points to be a small, evenly distributed subset of the
surface points, while showing that this strategy had only a small influence on the mesh node positions. An assessment of the
efficiency of the RBF method compared to a Laplacian approach was given, together with consideration of the resulting mesh
quality. The RBF method outperformed that based on Laplace’s equation in terms of speed and preserved the quality of the
initial mesh in nearly all cases.

The form of an RBF interpolation is [1,2]
Table 1
Basis fu

Name

Gaussia
Thin pl
Volume
Hardy’s
Hardy’s

Wendla
Wendla

Wendla

Wendla

Euclid’

Table 2
Algorith

Algorith

Full me

1

2

3

sðrÞ ¼
Xi¼N

i¼1

ai/ kr� rikð Þ ð1Þ
Here, sðrÞ is the function to be evaluated at location r and will define the motion of the volume points, / is the form of func-
tion adopted (see Table 1 for options, where v is any vector and c and r are tuning parameters [25,24] for the other functions),
the index i identifies the centres for the RBFs, while ri is the location of that centre. In this case the centres correspond to
mesh points located on the moving surfaces. The coefficients ai are found by requiring exact recovery of the original function
at these points ri. It is common to append polynomial terms to the interpolation (which allows rotations to be recovered
exactly) but for mesh motion this is undesirable as it results in motion of the far-field boundary (Table 2).

Functions may be divided in to three different categories: global, local and compact. Global functions are always non-zero
and grow moving away from the origin; examples are the thin plate spline, multiquadric and volume spline. Local functions
are always non-zero but decay moving away from the origin, these include the Gaussian and the inverse multiquadric. Com-
pact functions share the decaying property of local functions, but in addition reach zero at some finite distance, termed the
support radius. Global functions can produce large deformations of the far-field if used for mesh motion, so a local character
is preferred. Compact functions bring the additional benefit that deformation is strictly limited to remain within the support
radius.

Wendland’s C2 function is selected as the basis function since this provides a satisfactory compromise between the qual-
ity of the mesh motion, owing to its improved smoothness over the C0 function, and the conditioning of the linear system
solved to find the set of coefficients ai. In addition the compact support strictly limits the deformation to be within the region
bounded by the support, which is a convenient trait. Further comparison of different functions may be found in de Boer and
Bijl [29].

An important point is that compact functions have a value of zero at large distances away from their centres. This means
it is necessary to work with displacements rather than actual position, i.e. Dx is the function to be interpolated rather than x.
nctions.

Definition

n (G) /ðnÞ ¼ e�an

ate spline (TPS) /ðnÞ ¼ n2lnðnÞ
spline (VS) /ðnÞ ¼ n
multiquadric (HMQ) /ðvÞ ¼ ðc2 þ kvk2Þ

1
2

inverse multiquadric (HIMQ) /ðvÞ ¼ 1

c2þkvk2ð Þ
1
2

nd’s C0 (C0) /ðnÞ ¼ ð1� nÞ2

nd’s C2 (C2) /ðnÞ ¼ ð1� nÞ4ð4nþ 1Þ
nd’s C4 (C4) /ðnÞ ¼ ð1� nÞ6ð35n2 þ 18nþ 3Þ
nd’s C6 (C6) /ðnÞ ¼ ð1� nÞ8ð32n3 þ 25n2 þ 8nþ 1Þ
s Hat (EH) /ðnÞ ¼ p 1

12 n3
� �

� r2nþ 4
3 r3
� �� �

m costs.

m Solve Update

thod N3
sp NspNvp

nNsp þ N3
sel NselNvpPn

j¼1j3 þ jNsp NselNvp

Nsp n� bn
mc

� �
þ
Pj¼bn=mc

j¼1 ½ðmjÞ3 þmjNsp� NselNvp

6234 T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249
For easy computational treatment that maximises the use of matrix multiplication the problem is written in the following
fashion.

Using s to denote a surface mesh point
Dxs ¼Max ð2Þ

Dys ¼May ð3Þ

Dzs ¼ Maz ð4Þ
where
Dxs ¼

Dxs1

..

.

DxsN

0
BB@

1
CCA ax ¼

ax
s1

..

.

ax
sN

0
BB@

1
CCA ð5Þ
(analogous definitions hold for Dys and Dzs and their a vectors)
M ¼

/s1s1
/s1s2

� � � /s1sN

..

. ..
. . .

. ..
.

/sN s1
/sN s2

� � � /sN sN

0
BB@

1
CCA ð6Þ
with
/s1s2
¼ /ðns1s2

Þ ¼ /ðkrs1 � rs2k=RÞ ð7Þ
indicating the basis function evaluated on the distance between points s1 and s2 with a support radius of R.
To determine the dependence of the volume points on the surface points the following matrix must be formed, where v

indicates a volume node:
A ¼

/v1s1
/v1s2

� � � /v1sN

..

. ..
. . .

. ..
.

/vN s1
/vN s2

� � � /vN sN

0
BB@

1
CCA ð8Þ
so that the positions of the volume points, given by the vectors Dxv ;Dyv and Dzv are
Dxv ¼ Aax ¼ AM�1Dxs ¼ HDxs ð9Þ

Dyv ¼ Aay ¼ AM�1Dys ¼ HDys ð10Þ

Dzv ¼ Aaz ¼ AM�1Dzs ¼ HDzs ð11Þ
Or, more concisely
Dxv

Dyv

Dzv

0
B@

1
CA ¼

H 0 0
0 H 0
0 0 H

0
B@

1
CA

Dxs

Dys

Dzs

0
B@

1
CA ð12Þ
It is clear that there are two stages for accomplishing the mesh motion. First comes the ‘solve’, which is defined as either
finding M�1 or solving for ax=y=z. This is followed by the ‘update’, which is equivalent to either multiplying ax=y=z by A or mul-
tiplying through by H, depending on which option was used for the solve.
3.2. Implementation and efficiency

In the form presented the matrix H gives the fixed weightings used to move the volume points. These can be calculated
once at the beginning of the computation (external to the time loop), written to a file and then used within the time loop, as
indicated in Figs. 1 and 2. This makes the method very simple for small to medium sized meshes, but for larger cases H is
large and difficult to store, as it contains Nsp � Nvp entries. An alternative, also listed in Fig. 2, is to solve the linear system
during each timestep to obtain only ax=y=z so that the matrix H is never explicitly formed. This could be done directly with
a decomposition but since the matrix M is symmetric positive definite (providing the basis function is defined in the correct
fashion [25,24]) then a simple iterative method, such as the popular conjugate gradient method [32], may also be applied. If
the function is also compact then M will usually have a degree of sparsity, making the application of an iterative method
even more appealing. However, choosing between a direct and iterative solver is ultimately hardware and problem size

Fig. 1. Flowchart of methods for achieving mesh motion: before time loop begins.

Fig. 2. Flowchart of methods for achieving mesh motion: during time loop.

T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249 6235
dependent. In the current work the conjugate gradient method is applied as it leaves open the option to deal with much lar-
ger problems if needed. It should be noted for the small system sizes used later in this work a direct solution could be pref-
erable, although for small systems the question of cost is inherently of less interest.

Examples of fluid–structure coupling and mesh motion (with quality analysis) using RBFs are given by Allen and Rendall
[1,2]. These results are illustrated in Fig. 4 for a 2 m aerodynamic surface tip deflection in the 18th mode of the Brite-Euram
MDO (multidisciplinary optimisation) wing [33] of semispan 35 m, for a mesh with 250 � 103 cells and 3881 surface points,
where Wendland’s C2 function was used for the full list of surface points with a support radius of 1.0 and 2.0 mean aerody-
namic chords (MAC). These values were selected for demonstration purposes; the practical restriction on the support radius
is that it should be larger than the biggest motion of any surface point, usually by a factor of several times (in this case 5).
Deformation of the wing surface in the 18th mode is shown in Fig. 3. Although the mesh motion produced is of high quality
the cost of the full method would be too high to contemplate for use on a larger mesh; the time and memory associated with

Fig. 3. MDO wing mesh motion deflected shapes. Grey – original shape, black – deflected shape.

6236 T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249
solving the interpolation scale with N3
sp and N2

sp respectively while a mesh update scales with Nsp � Nvp. The objective of this
work is therefore to preserve the good quality of the motion scheme whilst reducing the memory and time requirements to
manageable levels.

Considering how to achieve this, it may be observed that the dominant factor in the cost of the method is Nsp as this influ-
ences the cost of both solving and updating the interpolation. Two philosophies exist for compressing the method: one seeks
an exact solution to an approximate problem, while the other an approximate solution to the exact problem. Greedy meth-
ods [34–36] fall into the former category, while most RBF techniques, such as the partition of unity [25,23,37], multilevel
[38] and alternating projection methods [25] reside in the latter, although there can be overlap as these methods sometimes
begin to merge [35]. For mesh motion the partition of unity method, which forms local interpolations and then assembles
these through a weighting function, is less desirable because discontinuities or a loss of smoothness can exist in regions
where interpolations overlap. Multilevel and alternating projection methods are most effective at speeding the solve stage,
but may only influence update costs to a lesser extent.

An appealing option is not to use the full set of surface points to define the motion, but rather a suitable reduced set that
represents the deformed geometry to a good degree of accuracy. Jakobsson and Amoignon [31] made this choice by simply
thinning the cloud of surface points without attempting to preserve geometrical accuracy. Although this is a sound approach,
it is possible to adopt a method that both reduces the cost and simultaneously attempts to maximise the accuracy. Such a
method has recently been considered for RBF interpolation problems with greedy algorithms and shown to be of promise
[39–41], so that approach is adopted for this work.

If only a reduced set of surface points (the ‘control points’) define the motion and no intervening action is taken, then any
surface point which is not a control point will be moved by the interpolation. This means sacrificing the manner in which the
surface of the volume mesh conforms to the desired surface displacements, and is only suitable providing the error at these
points remains below an acceptable level, which in turn must be achieved by making a ‘good’ choice for the set of control
points. Alternatively, the remaining incorrect surface points could be corrected exactly, providing the mesh quality did not
deteriorate in the first layer of cells away from the surface. The correction could also be propagated a few cell layers away
from the surface using a decaying function, thereby preserving the quality in this region more effectively.

Exactly how a greedy method would be implemented within a CFD code depends on whether it is to be placed inside or
outside the time loop. If placed inside then it could be run every timestep, or every nth timestep, using the real surface defor-
mations to keep the errors low. Placing the greedy method outside the loop would be suitable if the selected centres were to

Fig. 4. Mesh Motion for MDO 18th mode, mesh at three positions. Surface, wake plane, and a chordwise plane.

T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249 6237
be kept constant during the simulation, though this would imply choosing the points before the simulation started using a
benchmark deformation (see Section 4). If points were selected before the simulation then it would also be possible to store a
factorisation to speed solution. The various options for how to handle the implementation outside and within the time loop
are illustrated in Figs. 1 and 2.

6238 T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249
4. Greedy algorithms

A greedy algorithm [34–36] is one that always makes the optimal choice based on only a local assessment of the situation.
The method is ‘greedy’ because at any point the algorithm targets only the largest error for correction and makes no account
for the consequences of this choice. In the context of RBFs greedy algorithms have been considered because they simulta-
neously help to tackle both the computational challenges of solving and updating the interpolation. Upon completion they
return a reduced set of centres, together with their associated coefficients, that reproduce the function to within a certain
tolerance. Since RBF interpolation is a collocation type problem if all points were used the error would be zero everywhere.

Greedy algorithms for RBF interpolation can be considered in a number of different forms. The difference between these
forms is only a matter of how they derive the information used to decide which point, or points, to add next to the list of
points being used (‘active list’) and the error signal used to make the choices. The behaviour of this approach can be con-
trolled, for example, by changing the number of points added to the active list on each execution of the loop and the initial
points used to begin the method. Descriptions of the candidate error signals shall be given first, followed by a discussion of
the algorithms developed here.

4.1. Error signal description

The first question to consider is what type of signal to use to control the greedy method’s choices. It is possible to use
either geometrical arguments [39], interpolation errors [41], the power function [39] or any other prescribed function for
this purpose (as shown in Fig. 1). When using the interpolation errors it is possible to choose a form that is independent
of the data; this raises the interesting question of whether or not the selected points should be dependent on the original
function.

The errors Ex;Ey;Ez in either x; y or z come from the actual surface deflection and are one good error signal. That error may
be expressed at each point
Ex ¼ ðDxs � AM�1DxredÞ ð13Þ

Ey ¼ ðDys � AM�1DyredÞ ð14Þ

Ez ¼ ðDzs � AM�1DzredÞ ð15Þ
These errors may be squared and added to give a single error at point i
Ei ¼
ffi
Ex

i

� �2 þ Ey
i

� �2 þ Ez
i

� �2
q

ð16Þ
where A and M are the conventional evaluation and interpolation matrices for the centres on the active list. Dxred;Dyred;Dzred

consist of the entries of Dxs;Dys;Dzs for those points on the active list (which is a reduced list of all points).

4.2. Algorithm descriptions

Algorithm 1 (Greedy one point algorithm). The first form of the greedy method appends the data site where E attains its
largest value and then corrects only that point. Only a simple scan over all points is needed to identify the single worst error,
so this method has a cost proportional to Nsp.

Where iarb may be any index
fmax ¼ fiarb
ð17Þ

imax ¼ iarb ð18Þ

Find the required constant to correct the selected point
b ¼ fmax

/ð0Þ ð19Þ
Add correction to coefficient vector
aðimaxÞ aðimaxÞ þ b ð20Þ
Correct the interpolation at all points, where fev is the evaluation of the interpolation
fevðrÞ fevðrÞ þ b/ðkr� rimaxkÞ ð21Þ
Find new errors, where fex is the exact value of the function
eðrÞ ¼ FðfexðrÞ � fevðrÞÞ ð22Þ
Identify maximum error

T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249 6239
imax ¼ iðmaxðeÞÞ ð23Þ

fmax ¼ fexðrimax Þ � fevðrimax Þ ð24Þ
Return to Eq. (19), or if finished take selected points and solve exactly on these control points

Either a one point correction (see Wendland [25,34]) or a full solution (see Carr et al. [41]) may be used in each cycle of
the greedy loop. Even if an exact solution is used at each stage (as in Algorithm 2, described below) then the set of points
could still not be expected to be the actual optimal set of points because a greedy algorithm will always need some arbitrary
starting point, which will continue to influence how the point set evolves indefinitely unless points are systematically re-
moved. Although adding points where the error is large is a simple idea it is more complicated to decide how to remove
‘unnecessary’ points, to the extent that this is almost never done. This is because although there is a list of points where
the error is large, all points that have been used have a small or zero error, and this makes it difficult and costly to distinguish
between them. Algorithm 1 does tend to show a degree of self limiting behaviour in terms of how many points it uses (see
Section 5), often returning to correct a previously identified point rather than introducing a new one. This is not an advantage
in practice as it is related to the inefficiency of the method at solving the linear system, i.e. although the number of points
increases slowly, the error also goes down comparatively slowly.

The function F corresponds to any suitable function for converting the error in all three coordinates into a single number
at any point. In this case, the Euclidean distance has been used. A possible variant of the algorithm exists where a different
set of points is used to interpolate each coordinate direction but it is not thought to offer any additional advantages.

Algorithm 1 is very fast, probably the fastest of all possible RBF interpolation algorithms, running in a time proportional to
the number of centres Nsp. Unfortunately, as a pure method for solving the interpolation problem there are severe draw-
backs. Convergence is very fast initially, but rapidly drops off as points are added with a relationship similar to the form
1=k, where k is the iteration number. It might be tempting to think that the result would be the exact interpolation when
all points are used, but this is not the case either, in fact it would be necessary to continue iterating well beyond the stage
at which all points are being used for the method to approach the true solution. This would still be unlikely to occur in a
reasonable amount of time because of the way points interact; whenever a correction is made a further error is introduced
at another point. The method continues to ‘iron out’ the largest error at every stage, but when using a global function or a
large support radius this could take a long time.

For this reason it is beneficial to follow the execution of Algorithm 1 with a full solve, where all of the points selected by
the greedy method are taken and the interpolation solved exactly on those points. The effect of doing this is shown in Fig. 5
for the 250 � 103 cell mesh and reveals that the surface points around the tip are improved, particularly in the region of the
trailing edge.

The second greedy algorithm, rather than solving and correcting a single point at a time, solves the complete system be-
fore choosing which new point to include.

Algorithm 2 (Greedy full point algorithm). Guiding the greedy method with a full solution to the interpolation problem at
each step means that the selection of points is not influenced by using only a basic local correction at each point, as
presented in Algorithm 1. It would also be possible to run this method adding more than one point at a time to the active list;
in this case it would be necessary to implement a sorting system to select all the largest errors.

Select initial set of points
ared ¼ aint ð25Þ
Solve interpolation
ared ¼M�1fred ð26Þ
Fig. 5. Wing tip with and without a full final solve for Algorithm 1.

6240 T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249
Evaluate interpolation at all points
fev ¼ Aared ð27Þ
Find errors
eðrÞ ¼ FðfexðrÞ � fevðrÞÞ ð28Þ
Include new point(s) with largest e and return to Eq. (26)

Another option is to run these methods together to create a hybrid method. The fast point adding of Algorithm 1 can be
combined with the superior point efficiency of Algorithm 2 by alternating the cycles; Algorithm 1 can be executed most of
the time for speed, but, say, on every 10th execution Algorithm 2 is used.

Algorithm 3 (Hybrid algorithm). This method has been developed to use all of the different settings for Algorithms 1 and 2;
however, the main factor determining the performance is m. Once every m cycles Algorithm 2 runs instead of Algorithm 1.
Since Algorithm 2 can only deal with distinct points a list must be kept to prevent any point being visited more than
once.

do n ¼ 1;nstop

if n is a multiple of m then
! run one step of Algorithm 2
else
! run one step of Algorithm 1
endif
enddo
5. Greedy results

The Brite-Euram MDO aircraft [42] closely resembles the A380 and has a semispan of 35 m. Large static deformations in
the range of 3 m are observed for the highest cruise loads. For assessing the mesh motion two meshes are used: a 250 � 103
Fig. 6. Convergence of Algorithm 1.

T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249 6241
cell mesh with 3881 points on the surface and a 106 cell mesh with 11,593 surface points. Moving the 106 cell mesh with the
basic method of inverting the interpolation matrix on the surface points would be too expensive and demands the improved
greedy strategy. The meshes are deformed using three different displacements: a typical flight shape for cruise case three
[33] and deflections of both modes 1 and 18 scaled to produce a vertical tip displacement of 2 m. All of these displacements
are illustrated in Fig. 3.

In all cases, linear systems were solved using an unpreconditioned conjugate gradient method implemented in com-
pressed sparse row (CSR) form, started from a zero vector and iterated until the norm of the residual fell to 0.001 of its initial
value. The real displacements of the surface were used to drive the greedy point selection.

Convergence of Algorithm 1 is shown against iteration count in Fig. 6 for the three test cases and two mesh densities. The
error varies approximately with the reciprocal of the iteration count. An interesting feature is the noise in the decaying sig-
nal; this is likely to be due to mutual interference of points within each other’s support radius. Convergence of Algorithms 2
and 3, similar in general form, is shown in Figs. 7 and 8. Algorithm 2 always achieves a lower error than Algorithm 1 for the
same number of points and both show larger errors for mode 18 as a result of the more complicated shape and higher cur-
vature. A very important feature is that the convergence on both the 250 � 103 and 106 cell meshes for both algorithms is
almost identical for the mode 1 and flight shape displacements, but appears slower on the 106 cell mesh than the 250 � 103

cell mesh for mode 18. The parallel convergence on two different mesh sizes is of importance because it implies that the
number of points required to represent a certain deformed geometry may be independent of the number of surface mesh
points. A result of this type is crucial as it leads to a mesh motion cost that is only proportional to the number of volume
points and independent of the number of surface points. For the more complicated mode 18 shape there is a slower conver-
gence on the 106 cell mesh, but this is unlikely to be a serious problem because mode 18 would never participate in any
realistic motion with an amplitude as large as 2 m. Since the interpolation is a linear function of the data the error will scale
down proportionally.

Convergence of Algorithms 1–3 is compared directly for the mode 18 case on the 106 cell mesh in Fig. 9. The behaviour of
Algorithm 3, the hybrid method, lies between that of 1 and 2. How closely the performance resembles that of either of the
other methods depends, as might be expected, on how many cycles of either Algorithm 1 or 2 are used. Even using only a
small number of executions of Algorithm 2 improves the convergence considerably over that of Algorithm 1 alone but rep-
resents a fairly small increase in cost. Figs. 11 and 12 illustrate with contour plots the manner in which the surface errors
decay as more points are added for both Algorithms 2 and 3; slightly higher errors may be noticed for Algorithm 3 but these
Fig. 7. Convergence of Algorithm 2.

Fig. 8. Convergence of Algorithm 3, using a full update every 10th step.

6242 T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249
come with the advantage of a faster execution time. Hence, it is possible on the 106 cell mesh to achieve maximum errors of
less than 0.02% of the semispan (or 0.2% of motion amplitude) with as few as 200 surface points when using the flight shape.

Comparing Figs. 6 and 7 it is clear that using a full solution at each stage improves the compression significantly. Unfor-
tunately while the cost of Algorithm 1 is about nNsp þ N3

sel that of Algorithm 2 is near to
Pn

j¼1j3 þ jNsp, where Nsel is the num-
ber of points selected and n the total number of times to run the loop. These costs are shown in Tables 3 and 4 for the
250 � 103 and 106 cell meshes, normalised by the time taken to update the 106 cell mesh using the full method with the
C0 function and the mode 18 deflection shape. However, every centre that is saved removes 3Nvp operations from the update
every CFD timestep which is potentially a huge saving, so that extra effort reducing the number of centres is normally worth-
while. Table 4 shows that the cost of Algorithm 2 is reasonable up to about 400 points on the 106 cell mesh but thereafter
becomes large, but it is important to note that the greedy method cost need not be incurred for every update of the mesh if
the point selection is frozen before the CFD time stepping begins as shown in Fig. 1.

The cost of the hybrid scheme is Nspðn� bn
mcÞ þ

Pj¼bn=mc
j¼1 ½ðmjÞ3 þmjNsp�, where m represents the number of cycles of the

loop needed to give one execution of Algorithm 2 (the other executions being of Algorithm 1). This recovers nNsp for
m > n (given that

Pb
a ¼ 0 for b < a) and

Pn
j¼1j3 þ jNsp when m ¼ 1. The hybrid method therefore allows a good cost compro-

mise whilst preserving reasonable convergence, as illustrated in Fig. 8 and Tables 3 and 4. Tables 3 and 4 also show a com-
parison to the time taken to solve the same problem fully, revealing that if the full set of 11,593 surface points for the 106 cell
mesh is used then the update becomes the dominating cost. Also, with so many centres the matrix is poorly conditioned and
a less smooth function (Wendland’s C0) must be used, whereas the greedy methods can still use the superior Wendland’s C2
function with impunity owing to the smaller system size.

The distribution of points selected by Algorithms 1–3 are shown in Fig. 13. Generally Algorithm 2 selects a more even
distribution than Algorithm 1, while Algorithm 3 selects an intermediate set of points.

It should be noted that for Algorithm 1 a centre may be visited more than once, therefore the total number of executions
of the algorithm is not equal to the total number of points used. The number of points used is a function of the basis function,
interpolated function and the data points available. For a run interpolating the 18th mode of the MDO wing the number of
points used versus the number of iterations is shown in Fig. 10. The rate of increase of points used drops off with increasing
iterations, although if run forever the method would still eventually pick all possible centres, so although the graph appears
asymptotic towards a value smaller than the total number of centres this is not the case. Algorithms 2 and 3 add exactly one
point every time the loop runs, so that the number of points used always equals the number of executions.

Fig. 9. Comparison of average error for Algorithms 1–3, using mode 18 shape and 106 cell mesh.

Fig. 10. Number of points used by Algorithm 1, mode 18, 250 � 103 cell mesh.

T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249 6243
6. Mesh motion results

In order to assess the efficacy of RBF mesh motion a deflection of the 18th mode shape of the MDO wing has been con-
sidered using a 106 cell structured multiblock mesh. The mesh was generated with the multiblock generator of Allen [43].
Scaled to have a 2 m deflection at the tip of the structural nodes (double that of the case in Fig. 4), which gives a maximum of
4.5 m at the aerodynamic tip nodes, this represents a difficult case and certainly a harsher one than would normally be
encountered in aeroelastic simulation. The surface to mesh interpolation used Wendland’s C2 function, with a support radius
of twice the mean aerodynamic chord (MAC) and used 200 surface points selected with the hybrid greedy method.

Fig. 14 shows three views of selected grid planes, with the mesh at undeformed, maximum negative tip deflection, and
maximum positive tip deflection. Orthogonality is maintained very well, which is attributable to the function used resulting

6244 T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249
in greater influence of nearby points. If these mostly rotate (or translate) this motion is naturally propagated gently into the
mesh.

6.1. Grid quality

The quality of the above mesh during this deformation has been analysed using a measure of cell orthogonality change.
For a constant k plane, for example, the orthogonality at any point in that plane can be defined, following Siebert and Duli-
kravich [44], using the four neighbour points, as:
Fig. 11. MDO Wing surface errors using Algorithm 2, 106 cell mesh.

Fig. 12. MDO Wing surface errors using Algorithm 3, 106 cell mesh, m ¼ 10.

T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249 6245
v1 ¼ riþ1;j;k � ri;j;k ð29Þ

v2 ¼ ri;jþ1;k � ri;j;k ð30Þ

v3 ¼ ri�1;j;k � ri;j;k ð31Þ

v4 ¼ ri;j�1;k � ri;j;k ð32Þ

Table 3
Compu
require

Algorith

Full (C0
1
2
3

Table 4
Compu
to upda

Algorith

Full (C0
1
2
3

6246 T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249
qk ¼
1
4
ðv1 � v2Þ2

v2
1v2

2

þ ðv2 � v3Þ2

v2
2v2

3

þ ðv3 � v4Þ2

v2
3v2

4

þ ðv4 � v1Þ2

v2
4v2

1

()
ð33Þ
tation times, mode 18, 250 � 103 cell mesh, C2 function unless stated, with all, 200, and 400 surface points, m ¼ 10. All times normalised by the time
d to update the 106 cell mesh using full method.

m All surface points 200 points 400 points

Solve Update Solve Update Solve Update

function) 0.060 0.099 – – – –
– – 0.003 0.005 0.018 0.009
– – 0.026 0.005 0.117 0.009
– – 0.005 0.005 0.020 0.009

tation times, mode 18, 106 cell mesh, C2 function unless stated, with all, 200, and 400 surface points, m ¼ 10. All times normalised by the time required
te the 106 cell mesh using full method.

m All surface points 200 points 400 points

Solve Update Solve Update Solve Update

function) 0.201 1.0 – – – –
– – 0.027 0.018 0.043 0.038
– – 0.101 0.018 0.305 0.038
– – 0.025 0.018 0.050 0.038

Fig. 13. Point selection for Algorithms 1–3 (with m ¼ 10) using 400 points for 18th mode, 250 � 103 cell mesh.

Fig. 14. Mesh quality for 106 cell mesh, deformed in 18th mode for MDO wing with tip amplitude of 4.5 m.

T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249 6247
Similar arguments can be used for the other two directions, to give a local orthogonality value for each grid point. Orthog-
onality is often taken as zero to be perfectly orthogonal, i.e. all values of cos ðhÞ are zero, but it is the relative change in
orthogonality that is important for a mesh motion scheme, not the absolute value, and so the value here is reversed to mean
1.0 is perfectly orthogonal.

Since the orthogonality will vary throughout the mesh, it is desirable to isolate the influence of the mesh motion by find-
ing the change in this value, which can then be normalised by the undisturbed value, as shown in Fig. 14. A value of 0 now
means that no change in orthogonality has occurred.

6248 T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249
The most significant point is, even though there are large changes in orthogonality and volume propagated into the mesh,
the orthogonality at and near the surface remains completely unchanged, which is an essential property of an effective mesh
motion scheme.

The implications of a motion scheme of this kind for other types of mesh, especially those containing viscous cells, are
important. The deformation is entirely independent of the connectivity and shapes of the cells to be deformed; therefore,
problems regarding inversion of high aspect ratio viscous cells do not arise because the interpolation does not recognize
them as cells, only groups of points. This is a significant difference to pseudo-structural methods such as the spring analogy,
which use connectivity to determine the forces on mesh vertices. These methods can struggle on viscous grids because of the
severe differences in edge lengths, which are used to produce the spring forces, possibly leading to cell inversion. Edge
lengths are never used in this approach and therefore the same problem cannot arise.
7. Conclusions

A very efficient high quality mesh motion method has been presented using radial basis functions. This method is suitable
for mesh motion where the surface deformations are smooth (surfaces do not separate or join), as encountered in aeroelastic
simulation. The maximum allowable motion is determined by the support radius, which is a numerical parameter that may
be chosen by the user. A larger support radius allows a larger motion.

Results have shown that greedy algorithms offer an extremely effective method of cost reduction for this approach. Com-
pared to solving the full system, the most effective greedy method was found to provide a 4� speedup for the solve stage and
a 27� speedup for the update (based on a 106 cell mesh with 11,593 surface points, 400 of which were used to move the
mesh), while in terms of memory the saving is close to 11;593

400 ¼ 29�. Using only 200 surface points these improvements be-
come 8� for the solve, 55� for the update and 11;593

200 ¼ 58� in terms of memory. For the MDO flight shape case, using 200 of
the 11,593 surface points resulted in less than a 0.02% of semispan (0.2% of motion amplitude) maximum error in surface
displacement over the whole wing, which is particularly impressive. Mesh orthogonality was tested for a large amplitude
deformation of the 18th mode for the 106 cell mesh and found to be of high quality, particularly close to the surface.

Compression (reduction of the number of surface points) may be most efficiently carried out by Algorithm 2, but this is
also the most time consuming method. Algorithm 3 is favoured here, as this combines the cycles of both Algorithms 1 and 2
in an efficient alternating fashion. However, Algorithm 2 may still be preferable if reduction of the surface position error is an
absolute priority. Since Algorithm 2 is a simplification of Algorithm 3 both methods may easily be combined and used as
desired.

Significantly, for simple deformations such as in mode 1 or a typical flight shape, the number of surface points required to
represent the surface to within a certain tolerance at all other points has been shown to be almost independent of the num-
ber of surface points. This is extremely significant as it means the cost of the mesh motion may be reduced to be proportional
to Nvp, plus a constant that depends on the number of surface points required for that geometry but which does not vary
with mesh size.

References

[1] T.C.S. Rendall, C.B. Allen, Fluid–structure interpolation and mesh motion using radial basis functions, International Journal for Numerical Methods in
Engineering 74 (10) (2008) 1519–1559.

[2] C.B. Allen, T.C.S. Rendall, A unified approach to CFD–CSD interpolation and mesh motion using radial basis functions, in: 25th Applied Aerodynamics
Conference, AIAA Paper No. AIAA-2007-3804, Miami, FL, 2007.

[3] A.M. Morris, C.B. Allen, T.C.S. Rendall, Development of generic CFD-based aerodynamic optimisation tools for helicopter rotor blades, in: 25th Applied
Aerodynamics Conference, AIAA Paper No. AIAA-2007-3809, Miami, FL, 2007.

[4] A.M. Morris, C.B. Allen, T.C.S. Rendall, Domain element paramterisation for CFD-based optimisation of aerofoils using deformation by radial basis
functions, International Journal for Numerical Methods in Fluids 58 (8) (2008) 827–860.

[5] C.B. Allen, Aeroelastic computations using algebraic grid motion, The Aeronautical Journal 106 (1064) (2002) 559–570.
[6] D.P. Jones, A.L. Gaitonde, S.P. Fiddes, Moving mesh generation for unsteady flows about deforming complex configurations using multiblock meshes,

CFD Journal, Japanese Society of CFD (2001) 430–439.
[7] J.T. Batina, Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aerodynamic analysis, AIAA Journal 29 (3) (1991) 327–333.
[8] K.P. Singh, J.C. Newman III, O. Baysal, Dynamic unstructured method for flows past multiple objects in relative motion, in: 32nd Aerospace Sciences

Meeting and Exhibit, AIAA Paper No. AIAA-94-0058, Reno, NV, 1994.
[9] C. Farhat, C. Degand, B. Koobus, M. Lesoinne, Torsional springs for two-dimensional dynamic unstructured fluid meshes, Computational Methods in

Applied Mechanics and Engineering 163 (1998) 231–245.
[10] F. Blom, Considerations on the spring analogy, International Journal for Numerical Methods in Fluids 32 (2000) 647–668.
[11] E.F. Sheta, H.Q. Yang, S.D. Habchi, Solid brick analogy for automatic grid deformation for fluid–structure interaction, in: 36th AIAA Fluid Dynamics

Conference and Exhibit, AIAA Paper No. AIAA-2006-3219, San Francisco, CA, 2006.
[12] R. Loehner, C. Yang, Improved ALE mesh velocities for moving bodies, Communications in Numerical Methods in Engineering 12 (1996) 599–608.
[13] J.D. Bau, H. Luo, R. Loehner, E. Goldberg, A. Feldhun, Application of unstructured moving body methodology to the simulation of fuel tank separation

from an F-16 fighter, in: 35th Aerospace Sciences Meeting and Exhibit, AIAA Paper No. AIAA-1997-0166, Reno, NV, 1997.
[14] H. Jasak, Z. Tukovic, Mesh motion for the unstructured finite volume method, Transactions of FAMENA 30 (2) (2007).
[15] L. Tysell, Grid deformation of 3D hybrid grids, in: Proceedings of the eighth International Conference on Numerical Grid Generation in Computational

Field Simulations, 2002.
[16] B. Helenbrook, Mesh deformation using the biharmonic operator, International Journal for Numerical Methods in Engineering 56 (2003) 1007–1021.
[17] R. Melville, Nonlinear simulation of F-16 aeroelastic instability, in: 39th Aerospace Sciences Meeting and Exhibit, AIAA Paper No. AIAA-2001-0570,

Reno, NV, 2001.
[18] R. Melville, Dynamic Aeroelastic Simulation of Complex Configurations using Overset Grid Systems, AIAA Paper No. AIAA-2000-2341, 2000.

T.C.S. Rendall, C.B. Allen / Journal of Computational Physics 228 (2009) 6231–6249 6249
[19] C.B. Allen, Parallel universal approach to mesh motion and application to rotors in forward flight, International Journal for Numerical Methods in
Engineering 69 (10) (2007) 2126–2149.

[20] P. Cizmas, J. Gargoloff, Mesh generation and deformation algorithm for aeroelasticity simulations, in: 45th Aerospace Sciences Meeting, AIAA Paper No.
AIAA-2007-556, Reno, NV, 2007.

[21] X. Liu, N. Qin, H. Xia, Fast dynamic grid deformation based on delaunay graph mapping, Journal of Computational Physics 211 (2006) 405–423.
[22] A. Beckert, H. Wendland, Multivariate interpolation for fluid–structure-interaction problems using radial basis functions, Aerospace Science and

Technology 5 (May–June) (2001) 125–134.
[23] R. Ahrem, A. Beckert, H. Wendland, A meshless spatial coupling scheme for large-scale fluid–structure interaction problems, Computer Modeling in

Engineering and Sciences 12 (2006) 121–136.
[24] M. Buhmann, Radial Basis Functions, first ed., Cambridge University Press, 2005.
[25] H. Wendland, Scattered Data Approximation, first ed., Cambridge University Press, 2005.
[26] S.P. Sprekreijse, B.B. Prananta, J.C. Kok, A Simple, Robust and Fast Algorithm to Compute Deformations of Multiblock Structured Grids, Technical Report

NLR-TP-2002-105, NLR, 2002.
[27] M.H.L. Hounjet, J.J. Meijer, Evaluation of Elastomechanical and Aerodynamic Data Transfer Methods for Non-planar Configurations in Computational

Aeroelastic Analysis, Technical Report NLR-TP-95690U, NLR, 1994.
[28] B.B. Prananta, J.J. Meijer, Transonic Static Aeroelastic Simulations of a Fighter Aircraft, Technical Report NLR-TP-2003-187, NLR, 2003.
[29] A. de Boer, M.S. dan der Shoot, H. Bijl, Mesh deformation based on radial basis function interpolation, Computers and Structures 85 (2007) 784–795.
[30] A.H. van Zuijlen, A. de Boer, H. Bijl, Higher order time integration through smooth mesh deformation for 3D fluid–structure interaction simulations,

Journal of Computational Physics 224 (2007) 414–430.
[31] S. Jakobsson, O. Amoignon, Mesh Deformation Using Radial Basis Functions for Gradient Based Aerodynamic Shape Optimization, Technical Report FOI-

R-1784-SE, FOI, December 2005.
[32] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards 49 (1952)

409–436.
[33] D. Haase, V. Selmin, B. Winzell, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Progress in Computational Flow–Structure

Interaction, first ed., vol. 81, Springer, 2002.
[34] R. Schaback, H. Wendland, Adaptive greedy techniques for approximate solution of large RBF systems, Numerical Algorithms 24 (2000) 239–254.
[35] Y. Ohtake, A. Belyaev, H. Seidel, Multi-scale and adaptive CS-RBFs for shape reconstruction from cloud of points, in: MINGLE workshop on

Multiresolution in Geometric Modelling, Cambridge, UK, September 2003, pp. 337–348. Available at: <http://citeseer.ist.psu.edu/
ohtake03multiscale.html>.

[36] R. Schaback, H. Wendland, Numerical techniques based on radial basis functions, in: Albert Cohen, Christophe Rabut, Larry Schumaker (Eds.), Curve
and Surface Fitting, Vanderbilt University Press, Nashville, TN, 2000. Available at: <http://citeseer.ist.psu.edu/schaback00numerical.html>.

[37] H. Wendland, Fast evaluation of radial basis functions: methods based on partition of unity, Approximation Theory X: Wavelets Splines, and
Applications, Vanderbilt University Press, Nashville, Texas, USA, 2002. pp. 473–483.

[38] A. Iske, J. Levesley, Multilevel scattered data approximation by adaptive domain decomposition, Numerical Algorithms 39 (July) (2005) 187–198.
[39] S. De Marchi, On optimal locations for radial basis function interpolation: computational aspects, Rendiconti Del Seminario Matematico 63 (3) (2003)

343–357.
[40] S. De Marchi, R. Schaback, H. Wendland, Near-optimal data-independent point locations for radial basis function interpolation, Advances in

Computational Mathematics 23 (2005) 317–330.
[41] J.C. Carr, R.K. Beatson, J.B. Cherrie, T.J. Mitchell, W.R. Fright, B.C. McCallum, T.R. Evans, Reconstruction and representation of 3D objects with radial basis

functions, Proceedings of the ACM SIGGRAPH Conference on Computer Graphics (2001) 67–76.
[42] S. Allwright, Multi-discipline optimisation in preliminary design of commercial transport aircraft, in: J.-A. Desideri, C. Hirsch, P. Le Tallec, E. Onate, M.

Pandolfi, J. Periaux, E. Stein (Eds.), Computational Methods in Applied Sciences, ECCOMAS, Wiley, 1996, pp. 523–526.
[43] C.B. Allen, Towards automatic structured multiblock mesh generation using improved transfinite interpolation, International Journal for Numerical

Methods in Engineering 75 (4) (2007) 697–733.
[44] B.W. Siebert, G.S. Dulikravich, Grid generation using a posteriori optimization with geometrically normalised functions, in: Eighth Applied

Aerodynamics Conference, AIAA Paper No. AIAA-1990-3048, Portland, OR, 1990.

http://citeseer.ist.psu.edu/ohtake03multiscale.html
http://citeseer.ist.psu.edu/ohtake03multiscale.html
http://citeseer.ist.psu.edu/schaback00numerical.html

	Efficient mesh motion using radial basis functions with data reduction algorithms
	Introduction
	Mesh motion
	Radial basis function mesh motion
	Formulation
	Implementation and efficiency

	Greedy algorithms
	Error signal description
	Algorithm descriptions

	Greedy results
	Mesh motion results
	Grid quality

	Conclusions
	References

